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Abstract

This paper describes a mostly automatic method for taking the out-
put of a single panning video camera and creating a panoramic
video texture (PVT): a video that has been stitched into a single,
wide field of view and that appears to play continuously and indef-
initely. The key problem in creating a PVT is that although only a
portion of the scene has been imaged at any given time, the out-
put must simultaneously portray motion throughout the scene. Like
previous work in video textures, our method employs min-cut opti-
mization to select fragments of video that can be stitched together
both spatially and temporally. However, it differs from earlier work
in that the optimization must take place over a much larger set of
data. Thus, to create PVTs, we introduce a dynamic programming
step, followed by a novel hierarchical min-cut optimization algo-
rithm. We also use gradient-domain compositing to further smooth
boundaries between video fragments. We demonstrate our results
with an interactive viewer in which users can interactively pan and
zoom on high-resolution PVTs.
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1 Introduction

Image panoramas, in which a series of photos are taken from a sin-
gle viewpoint and stitched into a single large image, date back to
the mid-19th century.! Today, when viewed interactively on a com-
puter with software such as QuickTime VR [Chen 1995], image
panoramas offer a much more immersive experience than simple
snapshots with narrower fields of view. Indeed, panoramas are now
used quite commonly on the Web to provide virtual tours of hotels,
museums, exotic travel destinations, and the like.

In addition to image panoramas, various hybrid image/video ap-
proaches, which include video elements playing inside of an image
panorama, have been tried [Finkelstein et al. 1996; Irani and Anan-
dan 1998]. Full video panoramas [Neumann et al. 2000; Kimber
et al. 2001; Uyttendaele et al. 2004] — in which the entire scene is
in motion — have also been used to convey a more visceral sense
of “being there.” However, such video panoramas today have two
major drawbacks:

1. They require some form of specialized hardware to create,
e.g., multiple synchronized video cameras [Point Grey Re-
search 2005], or a video camera looking through a fisheye
lens or pointing at a panoramically reflective mirror [Nayar
1997], which restricts the resolution of the acquired scene.?
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Figure 1 One frame of the waterfall panoramic video texture.

2. They have a finite duration in time, with a specific beginning,
middle, and end; this finite duration can destroy the sense of
immersion.

To address the latter limitation, Schodl et al. [2000] introduced the
notion of video textures, which are videos that appear to play con-
tinuously and indefinitely. In this paper, we describe how to create
high-resolution panoramic video textures (PVTs), starting from just
a single video camera panning across a moving scene. Specifically,
this problem can be posed as follows:

Problem (“PANORAMIC VIDEO TEXTURES”): Given a
finite segment of video shot by a single panning camera,
produce a plausible, infinitely playing video over all por-
tions of the scene that were imaged by the camera at any
time.

Here, “panning” is used to mean a camera rotation about a single
axis; and “plausible” is used to mean similar in appearance to the
original video, and without any visible discontinuities (or “seams”),
either temporally or spatially.

The key challenge in creating a PVT is that only a portion of the
full dynamic scene is imaged at any given time. Thus, in order to
complete the full video panorama — so that motion anywhere in
the panorama can be viewed at any time — we must infer those
video portions that are missing. Our approach is to create a new,
seamlessly loopable video that copies pixels from the original video
while respecting its dynamic appearance. Of course, it is not always
possible to do this successfully. While we defer a full discussion of
the limitations of our algorithm to Section 6, in short, the operat-
ing range of PVTs is very similar to that of graphcut video tex-
tures [Kwatra et al. 2003]: PVTs work well for motions that are
repetitive or quasi-repetitive (e.g., swaying trees) or for complex
stochastic phenomena with overall stationary structure (e.g., wa-
terfalls). PVTs do not work well for highly structured, aperiodic
phenomena (e.g., the interior of a crowded restaurant).

ISee, for example, the panorama of Warsaw created in 1875 at
http://www.eurofresh.se/history/1/warszawal873-eng.htm.

2The output of such a lens or mirror system is limited to the resolution of
a single video camera (640 x 480 NTSC or 1280 x 720 HD), which is insuf-
ficient to create a panoramic, immersive experience that allows panning and
zooming. By contrast, our panoramic video textures can reach 9 megapixels
or more in size.
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Figure 2 The top diagram shows an x,¢ slice of an input video vol-
ume V (x,y,7). Each input video frame is shown as a grey rectangle. The
frames are registered, and in this case, the camera is panning to the right.
The bottom diagram shows an output video volume. The duration of the
output is shorter, but each output frame is much wider than each input
frame. Finally, the two diagrams show how a PVT can be constructed.
The output video is mapped to locations in the input in coherent frag-
ments; the mapping takes place in time only (as time offsets), never in
space.

Our work builds on a series of previously published steps, including
video registration, min-cut optimization, and gradient-domain com-
positing. Thus, the primary contributions of our work are in pos-
ing the PVT problem and in sequencing these previously published
steps into a method that allows a high-resolution PVT to be created
almost fully automatically from the video input of a single panning
camera. (The primary input we require of the user is to segment the
scene into static and dynamic portions.) A key difficulty in creating
PVTs is coping with the sheer volume of high-resolution data re-
quired; previously published methods (e.g., Kwatra et al. [2003]),
do not scale to problems of this size. To this end, we introduce a
new dynamic programming approach, followed by a novel hierar-
chical min-cut optimization algorithm, which may be applicable, in
its own right, to other problems. In addition, we show how gradient-
domain compositing can be adapted to the creation of PVTs in order
to further smooth boundaries between video fragments.

The rest of this paper is organized as follows. In the next section, we
make the PVT problem more precise by defining a space for PVTs
and an objective function within that space we wish to minimize. In
Section 3, we introduce an optimization approach to calculating the
best possible PVT within this space. In Section 4, we show how the
computed result can be improved by compositing in the gradient
domain. Finally, in the remaining sections of the paper, we show
results, discuss limitations, and propose ideas for future research.

2 Problem definition

We begin by assuming that the input video frames are registered
into a single coordinate system representing the entire spatial extent
of the panorama. This registered input can be seen as forming a
spatio-temporal volume V (x,y,#), where x,y parameterize space (as
pixel coordinates), and ¢ parameterizes time (as a frame number
from the input video).

X

Figure 3 A simple approach to creating a PVT would be to map a con-
tinuous diagonal slice of the input video volume to the output panorama,
regardless of appearance. This approach creates a valid result, but un-
necessarily shears spatial structures across time (see Figure 4).

A diagram of an x,¢ slice (one scanline over time) of a sample input
volume is shown in Figure 2. Each input video frame provides color
for only a small portion of this 3D space (the grey rectangles in
Figure 2); we use the notation V (x,y,t) = 0 to indicate that (x,y)
falls outside the bounding box of the input video frame at time ¢,
and thus has no valid color.

Our approach to constructing a PVT is to copy pixels from the input
video to the output. Therefore, a PVT is represented as a mapping
A from any pixel in the output panoramic video texture to a pixel
in the input. We simplify the problem by assuming that pixels can
be mapped in time but never in space. Thus, for any output pixel
p = (x,y,t), the mapping A(p) is a vector of the form (0,0,6(p)),
which maps (x,y,t) to (x,y, 7+ 0(x,y,7)). Notice that each pixel
in the same piece of copied video in Figure 2 will have the same
time-offset value §.

The space of all possible PVTs is clearly quite large. One simple ap-
proach to creating a PVT might be to choose time offsets that take
a sheared rectangular slice through the input volume and shear it
into the output volume, as shown in Figure 3. However, such an ap-
proach may change the structure of the motion in the scene, as Fig-
ure 4 demonstrates. Also, the result is unlikely to appear seamless
when played repeatedly. In contemporaneous work, Rav-Acha et
al. [2005] show that this approach can sometimes be effective for
creating dynamic panoramas, given the limitations noted above.

Instead, we suggest creating PVTs by mapping coherent, 3D pieces
of video, as suggested in Figure 2. The seams between these pieces
will be 2D surfaces embedded in the 3D space, and a good result
will have visually unnoticeable seams. Therefore, we rephrase the
PVT problem more precisely as follows:

Problem (“PVT, TAKE 2”): Given a finite segment of
video V shot by a single panning camera, create a map-
ping A(p) = (0,0,8(p)) for every pixel p in the output
panoramic video texture, such that V(p+A(p)) # 0 and
the seam cost of the mapping Cs(A) is minimized.

It remains to define the seam cost Cy(A), which we will come back
to after describing an additional detail. Until now we have treated
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Figure 4 Three cropped details of a single frame of the waterfall scene (Figure 6). From left to right: the input video frame, a frame created using
the simple approach described in Figure 3, and a frame created using our approach. While the simple approach yields a result that looks like a waterfall,
our result more faithfully mimics the input. This comparison is shown in video form on the project web site.

PVTs as entirely dynamic; however, as the original video textures
paper showed [Schodl et al. 2000], there are often important ad-
vantages to partitioning the scene into separate dynamic and static
regions. For one, static regions can be stored as a single frame, sav-
ing memory. For another, spatially separate dynamic regions can
be computed independently and possibly with different durations,
which is useful if they portray phenomena with different periodici-
ties.

For these reasons, we define a single static background layer B(x,y).
This background layer contains a color for each pixel in the user-
specified static regions, while B(x,y) = 0 for those pixels in the
dynamic regions. We also define a binary matte D for the dynamic
regions of the output panoramic video texture. We set D to the di-
lation of the null-valued regions of B(x,y); thus, D overlaps the
non-null regions of B along a one-pixel-wide boundary. We can use
this overlap to ensure a seamless match between the dynamic and
static portions of the output PVT. For convenience, we also treat D
as a domain, so that (x,y) € D implies that (x,y) is in the dynamic
portion of the binary matte.

‘With these definitions, we can define the seam cost:

Cs(A) = > (Cp(A,p) + Cu(A, p)) (1
p=(xeyt) | (x)€D

where

Coldp) { IV(p+a) =BE)I* w8020

0 otherwise.

and

0 otherwise.

Gap =y { IV(p+Ap) =V (p+A(p+e) itp+een:
i=1

Here, e, ey, and e3 are the unit vectors (1,0,0), (0,1,0), and
(0,0,1), respectively; and k is a constant, used as an exponent on
the L, norm: we use k = 8. The definition of the seam cost assumes
that the constraint V (p+ A(p)) # 0 for each p € D is satisified.

Thus, the seam cost sums two terms over all pixels p in the dynamic
portion of the output PVT. The first term is the difference between
the pixel values in the dynamic scene and the static scene if p is on
the boundary where the two overlap. The second term is the differ-
ence between the value of the pixel that p maps to in the original
video and the value of the pixel that p would map to if it had the
same time offset as its neighbor, for neighbors in all three cardinal
directions. (In all cases, the difference is raised to the k-th power to
penalize instances of higher color difference across a seam.)

One final note: in order to ensure that the PVT loops seamlessly,
we define A(x,y,t) = A(x, y, f mod fmax ) for all #, where fmay is the
duration of the PVT. We discuss how #y,x is determined, as well as
the mapping A itself, in the next section.

3 Our approach

Notice that the cost function Cy maps onto a 3D Markov random
field (MRF), where D X [0..fmax] is the domain and A(p) (or, equiv-
alently, 6(p)) are the free variables for which we need to solve.
We can thus use optimization to minimize it. Algorithms for solv-
ing this type of problem include belief propagation [Freeman et al.
2000] and iterative min-cut [Kolmogorov and Zabih 2002].

Unfortunately, the scale of the problem is intractably large. A typ-
ical aligned input video is 6000 x 1200 pixels spatially, and thou-
sands of frames long. In our experiments, the typical output video
is 35 frames long, and any one pixel p has about 500 choices for
8(p). Thus, the typical output volume has 2.5 x 10% variables, each
with 500 possible values. A straightforward application of standard
MREF algorithms would require more memory and compute power
than is currently available. We therefore designed an accelerated
algorithm to compute a result.

Note that if a dynamic region is small enough to fit entirely within
the bounding box of a range of fmax input frames, its video tex-
ture can be created using existing techniques [Kwatra et al. 2003].
For larger regions that do not meet that constraint, however, we use
the following approach to integrate portions of the input video over
space and time.

We first register the video frames, and then separate the PVT into
static and dynamic regions. These are the only steps that require
any manual user input. We then compute, for each dynamic region,
a good loop length for that portion of the PVT. Finally, we solve
for the mapping A. The first step of the solution is to minimize a
heavily constrained version of the optimization problem using dy-
namic programming at a sub-sampled resolution. We then loosen
the constraints and use min-cut optimization to refine the solution.
The final step uses hierarchical min-cut optimization to refine this
sub-sampled solution at the full resolution.

3.1 Video registration

Video registration is a well-studied problem, and continues to be an
active area of research. We simply use existing techniques for regis-
tration (our own contributions begin after this preprocessing step).
Specifically, we use a feature-based alignment method [Brown and
Lowe 2003], followed by a global bundle adjustment step [Triggs
et al. 2000] to align all the video frames simultaneously with each
other. We use a three-parameter 3D rotation motion model [Szeliski
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and Shum 1997]. Once the motion parameters are recovered, we
warp the video frames into a single coordinate system by project-
ing them onto a cylindrical surface.

The video registration step, using existing techniques, is not always
entirely successful. In order to improve the registration results, it
is sometimes helpful to allow a user to manually mask out moving
parts of the input video, due either to actual object motion or to
scene parallax, so that they are not incorrectly used in the registra-
tion process. The masking required for the scenes we have tried is
discussed in more detail in Section 5.

3.2 Static and dynamic regions

Schodl et al. [2000] showed that the dynamic regions of a scene
could be identified by thresholding the variance of each pixel across
time. However, we found that errors and jitter in our registration
step, as well as MPEG compression noise from our digital camera,
made the variance of static regions as high or higher than the vari-
ance of gently moving areas, such as rippling water. We thus ask
the user to draw a single mask for each sequence. Apart from any
manual masking that might be required to improve the video regis-
tration, this is the only manual part of our PVT generation process.

Given a user-drawn mask, we create a single panorama for the static
regions; we first dilate the mask once to create an overlap between
static and dynamic regions, and then create the static panorama au-
tomatically using the approach of Agarwala et al. [2004].

3.3 Looping length

In each dynamic region, the duration #,x of the output video should
match the natural periodicity of that region. We thus automatically
determine the natural period within a preset range £y, - . . fmax by
examining the input video within the dynamic region. We typically
set {min = 30 and £pax = 60, since shorter lengths are too repetitive,
and longer lengths require higher output bandwidth and compute
time. To determine the best loop length fmax, each input frame ¢ is
compared to each input frame in the range (£ + in,f + fmax) that
spatially overlaps with frame ¢ by at least 50%. The comparison
is a simple sum of squared differences in RGB values, normalized
by the number of overlap pixels. We find the pair of frames #,7 +
that best minimizes this comparison, and set fmax (#) to £ — 1. This
approach is very simple, but in the data sets we have tried it works
well.

3.4 A constrained formulation

The first step in creating a PVT for each dynamic region is to solve
a heavily constrained version of the overall problem. We motivate
these constraints with an observation. If a seam between spatially
neighboring pixels is visually unnoticeable at a certain frame ¢, the
seam between the same two pixels tends to be unnoticeable in the
frames before and after ¢. Although this observation is sometimes
wrong, temporal coherence in the scene makes it correct more often
than not. Thus, one way to significantly reduce the search space is to
assume that, at each output location (x,y), there is just a single time
offset &, regardless of ¢. This constraint reduces the search space
from a 3D MRF to a 2D MRF. However, the 2D MRF would still
be expensive to compute, since a seam penalty between neighboring
output pixels would require comparing a span of pixels across time.

An additional constraint can be added to reduce the problem to a 1D
Markov model. Since the video is shot by panning a video camera,
we can assume that any one frame of video covers the entire height
of the output space; thus, we set A(p) the same for each pixel in a
given column of the output without creating a mapping that would

X

Figure 5 A possible solution to the constrained formulation described
in Section 3.4, where a continuous span of video pixels across y and 7 is
copied to each column of the output. The solution shown here uses only
6 different values of A(p).

2o outside of the input video volume.*

Solutions meeting both these constraints have the property that
A(x,y,t) is only a function of x (shown graphically in Figure 5).
This property results in a 1D search space, requiring a choice of
A(0,0,6(p)) for each column of video; thus, the global minimum
can be found using dynamic programming. The same cost function
Cs (Equation 1) is minimized, though the C, term will only be non-
zero in the e direction. The solution to the constrained formulation
is a list of time offsets 6(0,0,8(p)). We have found that this solu-
tion tends to be very coherent; that is, there are only a few unique
time-offset values that end up being used, far fewer than the to-
tal number of input frames. For example, Figure 5 shows only six
unique time-offsets.

3.5 Loosening the constraints

The PVT computed using the constrained formulation just de-
scribed contains long, vertical cuts. These cuts may appear as ar-
tifacts, especially for more stochastic textures. Also, the computed
loop is a transition between full axis-aligned blocks, like that of
Schodl et al. [2000]. As Kwatra et al. [2003] showed, loops that are
spatio-temporal transitions over a range of frames produce better
results.

We therefore consider the full 3D MRF problem, but use the con-
strained solution to prune the search space. To prune the search
space of the 3D MREF, we consider only those m unique time offsets
used by the solution to the constrained formulation. In this stage of
the optimization, each pixel p in the output PVT may take on a dif-
ferent mapping A(p) = (0,0,8(p)) (Figure 2); however, &(p) must
be one of the m previously identified time offsets.

Seamless looping requires that we consider m more time offsets.
Consider the case of two temporally looped neighbors p = (x,y,0)

“In practice, the full column of pixels is not always entirely present in
the input volume, due to non-perfectly-horizontal panning, camera jitter,
and/or the results of cylindrical mapping in the registration step. Thus, we
just consider time offsets that map at least 90% of the pixels in the column
to pixels in the input video volume.
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and p' = (x,y,tmax — 1) in the output volume, which map to
(x,y,8(p)) and (x,, tmax — 1 + 8(p')), respectively, in the in-
put video. We would expect a zero seam cost if 6(p) immedi-
ately preceded fmax — 1 + 6(p’) in time, i.e., after rearrangement,
if 8(p') = 8(p) — tmax- However, the pared down list of possible
time offsets may not contain 8 (p) — fmax. Thus, to allow for a zero-
cost transition in this case, we augment the set of labels to include
m additional labels, & (x,0,0) — fmax.-

Given this reduced search space, iterative min-cut optimization is
used to solve the more general 3D MRF. This optimization is exe-
cuted in a series of alpha expansion moves [Kolmogorov and Zabih
2002]. Each expansion chooses a single time-offset ¢« and expands
it. During an expansion move, each pixel p can maintain its current
time-offset &(p), or switch to . To reach a near-global minimum
of the objective function, we can iterate over each possible value of
o and expand it, and continue to do so until consecutively expand-
ing each « fails to further reduce the total cost.

To perform an alpha expansion, we define a three-dimensional
graph with each node representing one pixel in the output video
volume, and solve for the minimum cut. Details on the graph setup
can be found in Kolmogorov and Zabih [2002]. In their terminol-
ogy, during a single alpha expansion the Cj(A, p) term of the seam
cost is a function of a single binary variable, and C, (A, p) is a func-
tion of two (neighboring) binary variables.

It is advantageous to minimize the size of the graph, since mem-
ory consumption and processing time scale with it. In general, it is
not necessary to create a node for each pixel in the video volume.
For example, Kolmogorov and Zabih do not create nodes for pix-
els already assigned time offset ¢, since their time offset will not
change during alpha expansion. We also prune nodes in this fashion;
however, our application offers another opportunity for pruning. In
particular, for a given ¢, we do not create nodes corresponding to
output pixels p for which V(p + (0,0, ct)) = 0. This pruning en-
forces the constraint V(p + A(p)) # @ given in the PVT problem
definition, and it also significantly improves efficiency. The spatial
resolution of the graph becomes limited by the dimensions of an in-
put video frame, rather than the dimensions of the entire panorama.

While pruning improves the efficiency of the optimization, we still
found that performing a min-cut at full resolution can overwhelm
the memory and processing capabilities of current computers. We
thus present a novel, hierarchical MRF optimization approach that
allows us to compute the final result.

3.6 Hierarchical min-cut optimization

A common approach for building hierarchical algorithms in com-
puter vision [Bergen et al. 1992] is to first compute a solution at a
coarser resolution. This result is then used to initialize the compu-
tation at the finer resolution, helping to avoid local minima. This
approach is not immediately applicable; we cannot compute a so-
lution at the finer resolution because the memory requirements are
too high. Instead, we use the computed solution at a coarser spatial
resolution o prune the graph when computing at the finer resolu-
tion. Our intuition is that the computed seams at the finer resolution
will be roughly similar to the ones at the coarse resolution, but that
the additional image information will cause local changes. We thus
only optimize within the neighborhood of the seams found at the
coarse resolution.

Specifically, given a result §%) (x, y,r) computed at a coarser spatial
resolution, we first create the finer resolution solution § 1) (x, y, 1)
by up-sampling 8*) (x,y,7). Then, when expanding o, we first add
to the graph only those video pixels not assigned ¢ that neighbor
an ¢r-assigned pixel. That is, we add pixels along the boundary be-

tween o and non-o. Finally, we dilate this boundary set of nodes
s times (typically 10) and add these new nodes to the graph (while
respecting pruning rules already mentioned). We then compute the
expansion on this limited graph.

Note that this hierarchical approach is more susceptible to local
minima than standard alpha-expansion. The minimum found by the
alpha-expansion algorithm is provably close to the global minimum
(when the energy function meets certain requirements [Kolmogorov
and Zabih 2002]); our pruning technique loses this guarantee. How-
ever, in practice, in which we typically use 2 or 3 levels in the hier-
archy, we have found the technique to work well.

4 Gradient-domain compositing

The result computed using optimization can still exhibit visual arti-
facts for several reasons. Although we lock exposure on the video
camera, we still found some exposure variations in the recorded im-
ages. Also, it is sometimes impossible to find seams that are com-
pletely natural (some reasons are discussed in Section 6). Finally,
small errors in the alignment procedure can also create visual arti-
facts. To improve results we composite the video fragments in the
gradient domain, by treating the video as sources of color gradients
rather than color magnitudes.

This basic approach is not new. Pérez et al. [2003] first demon-
strated the efficacy of gradient-domain techniques for combin-
ing 2D images. The Photomontage system [Agarwala et al. 2004]
showed that gradient-domain compositing, in combination with
MRF optimization, can yield better results than either technique
alone. However, simply applying this 2D approach separately to
each frame of a composited video can lead to poor temporal co-
herence in the form of color flashing. To address this, Wang et
al. [2004] extended these 2D approaches to spatio-temporal 3D in
order to combine videos in the gradient domain. We build on the
work of Wang et al. to solve our problem.

We first create a 2D gradient field for the still regions of the scene.
This gradient field is then integrated to form the still panorama.
Next, a 3D gradient field is formed for the dynamic regions of the
scene, and integrated to create video textures. Integrating the gradi-
ent field requires the solution of a large, linear system of equations.
A full derivation of this system can be found in Wang et al.; we de-
scribe only the unique aspects of our system. For one, we wish to
ensure that seams between still and dynamic regions are minimized;
this requires a judicious choice of boundary conditions. Secondly,
we want to make sure the video loops seamlessly.

4.1 Boundary conditions

Any application of gradient-domain techniques first requires a
choice of boundary conditions, which describe how to handle gra-
dients at the boundaries of the domain. Dirichlet boundary condi-
tions, like those used by Pérez et al., are suitable if the colors of
the boundary pixels outside the domain are known. If they are not
known, as in the Photomontage system and the work of Wang et
al., the weaker Neumann boundary conditions must be used. The
mathematical definition of these boundary conditions can be found
in the cited papers.

A mix of both of these boundary conditions is needed in our case.
For boundary pixels of dynamic regions that are adjacent to pixels
within the still background panorama, the colors of these adjacent
pixels are known; we can thus use Dirichlet boundary conditions.
For boundary pixels that lie along the boundary of the entire scene,
the colors of adjacent pixels outside the domain are not known; they
are outside the region captured by the video camera. For these we
use Neumann boundary conditions.
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Figure 6 One frame of three panoramic video textures. The name, reso-
lution, and storage requirements of the three PVTs, from top to bottom,
are waterfront (3600x1200, 115 MB), park (7400x1300, 107 MB),
and yachts (3300x800, 65 MB). The waterfall PVT in Figure 1 is
2600x1400, 106MB. The storage size is influenced by how much of the
scene is static.

4.2 Looping

Applying the above procedure can lead to a gradual shift in color
from the first to last frame; this can cause a popping artifact when
looped. Thus, gradients between neighboring pixels in the first and
last frame must also be added to the linear system solved when
integrating the gradient field.

5 Results

We show four panoramic scenes as results. Our results are best
viewed within our interactive viewer, which can be downloaded
from our project web site; however, one frame of each result is
shown in Figures 1 and 6. Three of these panoramas were shot with
an HD video camera in portrait mode, with a vertical resolution of
1280 pixels, and one was shot with a standard video camera, with a
vertical resolution of 720. We typically shot about two minutes of
video for each scene, and were careful to leave the camera still at the
beginning and end to capture enough material near the boundaries
of the scene. (Full 360-degree PVTs should also be possible, and
would not in principle require dwelling at the beginning or end.)
The exposure control on each camera was locked, but auto-focus
was enabled.

In general, the results are compelling and immersive, although care-
ful examination does reveal the occasional artifact. When looking
for artifacts, it is important to see if the artifact also exists in the
input video. For example, there are blurry areas that arise from the
limited depth of field of the camera, and noise from MPEG com-
pression. The most noticeable artifacts, in our opinion, come from
jitter and drift in the alignment. For example, jitter in a dynamic re-
gion becomes more noticeable when it is adjacent to to a perfectly
still, static region.

5.1 Performance and human effort

The main human effort required to create a panoramic video texture
is the drawing of a single mask; this mask does not need to be exact,
and generally took us about ten minutes to create.

The automatic registration of video frames is not completely suc-
cessful; the results contain jitter and drift. Scenes that lead to at-
tractive panoramic video textures tend to contain significant mo-
tion, and this motion can be problematic for current alignment tech-
niques. For example, the bottom twenty percent of the waterfront
scene is filled with motion that causes significant jitter; so we
cropped this region out before alignment. Techniques for register-
ing non-rigid scenes [Fitzgibbon 2001] may reduce the need for
user intervention. Finally, this same scene also contained a railing
very close to the camera; since we do not rotate the camera about
its exact optical center, this railing caused parallax errors. We thus
cropped the bottom of the scene after alignnment, but before pro-
cessing it into a panoramic video texture.

Each panoramic video texture takes between two and seven hours
to compute. Significant time is spent swapping video frames in and
out of memory, since the entire input video is too large to store.
More intelligent caching of frames would greatly reduce the time
required to produce a PVT.

It would be useful to compare the running time of our accelerated
algorithm against the application of standard MRF techniques to
the PVT problem (e.g., [Kwatra et al. 2003]). However, our imple-
mentation of this approach did not finish executing, since the pro-
cessing of even our smallest data set would not fit in main memory.
We downsampled this data set to fit within the available 2 GB of
memory, but the process still did not finish after a week.

6 Limitations

‘We have demonstrated that high quality PVTs are possible for a va-
riety of scenes, but they will not work for all scenes and share some
of the limitations of the work of Kwatra et al. [2003]. Typically, a
scene needs to exhibit some kind of stationarity, so that there ex-
ist some non-consecutive pieces of the video volume that can be
shifted in time and fit together without objectionable artifacts. Ex-
amples of these kinds of scenes include phenomena with periodic or
quasi-periodic motions, such as swaying trees or waving flags, and
unstructured forms with more random motions, such as waterfalls.

PVTs, however, cannot model structured aperiodic phenomena, nor
can they recreate periodic phenomena that were not observed for
the duration of a complete cycle. Aperiodicity may arise when a
single structure simply moves aperiodically, for example, when a
person walks across a scene, or when overlapping elements are each
moving periodically, but with sufficiently different periods that their
motions do not repeat once during any given loop length. The other
case, failure to observe a complete cycle of a periodic phenomenon,
can arise if the camera is moved too quickly while panning.

Although PVTs cannot model structured aperiodic phenomena, in
some cases, they can successfully omit them altogether. For in-
stance, if a person walks across a scene that otherwise meets the cri-
teria for a good PVT, the optimization algorithm will favor omitting
the pixels corresponding to that person and fill in with observations
from other moments in time. The input video of the waterfall
scene, for example, contains flying birds and passing people; both
are automatically omitted in the final PVT. (Another approach to
handling objects such as this is to include them as “frozen” forms
in the static portion of the panorama.)

Our system will sometimes produce good results for scenes that do
not strictly match our assumptions. For example, the yachts scene
contains cars on a highway in the distance. The algorithm takes
advantage of occluding trees and boat masts to produce a seamless
result. The distant cars seem to just disappear once they pass behind
the occluders, but the overall effect is perceived as quite natural.
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7 Future work

There are many good areas for future work. The ability to handle
scenes with various “foreground characters” (a.k.a. “video sprites”
[Schodl et al. 2000]) would greatly increase the applicability of
our system. We could also eliminate the need for user interaction
by automatically segmenting the scene into dynamic and still re-
gions. This segmentation could also be used to improve the auto-
matic registration of the video frames. Audio would greatly enhance
the immersiveness of our results; the audio would require similar
texturing techniques, and could follow movements within the in-
teractive viewer. The output of multiple capture devices could be
combined into one panorama. For example, the static regions could
be captured with a still camera to allow greater resolution. Also,
we currently require the camera to pan across the scene; it would
be straightforward to loosen this constraint to allow pan and tilt,
though the optimization problem would be less constrained, requir-
ing more computation time. Finally, we currently lock the exposure
on the camera. Ideally, we would let the camera choose the best
exposure dynamically to create high-dynamic-range, panoramic
video textures. This enhancement would involve mapping the in-
put frames to radiance space before applying our computations.

8 Conclusion

One of the great promises of our field is to someday create a totally
immersive experience, engaging all five senses in a convincing en-
vironment that could be entirely synthetic. Panoramic photography
is an early technology that provides a limited form of immersion.
Video textures enhance the illusion of presence, allowing dynamic
phenomena to play continuously without any visual seams or ob-
vious repetition. Panoramic video textures combine these two ap-
proaches to create what might be considered a new medium that is
greater than the sum of its parts: The experience of roaming around
at will in a continuous, panoramic, high-resolution, moving scene
is qualitatively quite different from either panning around in a static
scene or watching a single video texture play. In the not so distant
future, we envision panoramic video textures being employed quite
commonly on the Web, just as image panoramas are today. There,
they will provide a much more compelling sense of “being there,”
allowing people to learn about and enjoy distant places — and share
their own experiences — in captivating new ways.
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Errata

July 25, 2005

1. We cited the incorrect paper when introducing the alpha-expansion algorithm and when de-
scribing the optimality properties of alpha-expansion. In the fourth paragraph of Section 3.5
and the third paragraph of Section 3.6 we should have cited the following paper rather than
Kolmogorov and Zabih 2002.

Boykov, Y., Veksler, O., Zabih, R.. Fast Approximate Energy Minimization via Graph Cuts.
In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI). vol. 23, no.11,
pp-1222-1239, 2001.



